首页 > 实用文 > 说课稿

《点到直线距离》说课稿

时间:2024-09-23 23:35:07
《点到直线距离》说课稿

《点到直线距离》说课稿

作为一位兢兢业业的人民教师,时常需要编写说课稿,借助说课稿可以更好地组织教学活动。那么优秀的说课稿是什么样的呢?下面是小编整理的《点到直线距离》说课稿,仅供参考,欢迎大家阅读。

《点到直线距离》说课稿1

各位领导和老师,大家下午好!今天我说课的题目是高中数学苏教版必修2第二章第一节内容《点到直线的距离》下面我想谈谈我对这节课的一些浅薄的认识。

解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想,其主要内容是计算和证明,而计算问题则主要是距离和角的计算。其中距离的计算主要包括点、线、面之间距离的计算,而点到直线的距离处在关键的位置上。

《点到直线的距离》这一节是研究平面元素的位置关系,由定性研究到定量研究的第二节课。它是解决点线、线线距离的基础,也是研究直线与圆、圆与圆位置关系的重要工具,同时为后面学习圆锥曲线作准备。教材试图让学生经历探索点到直线距离公式并论证这个公式的过程,深刻领会蕴涵于其中的数学思想和方法,如数形结合、算法、函数等;并让学生享受作为学习主体进行探究、发现和创造的乐趣。

教材中以算法语言的形式给出了两种推导点到直线的距离公式的方法,尤其是第二种方法是通过构造形解决数的问题,然后再把形代数化,这一正一逆,使数与形达到了完美的结合,其蕴含的重要思想,需要学生细细体会。

针对咱们师范学校学生的特点,结合本教材,本着低起点、高要求、循序渐进,充分调动学生学习积极性的原则,我制定了以下教学目标:

首先是掌握点到直线的距离公式,并能运用它解决一些简单问题;其次通过运用面积法推导点到直线的距离公式的推导过程,使学生进一步了解数学结合思想在解决具体问题中的重要作用;第三让学生经历自主探究,合作交流的过程,充分感受点到直线的距离公式的推导过程;同时通过此过程,渗透算法、化归等思想,培养学生勇于探索、勇于创新的精神。

我把点到直线的距离公式的推导思路以及其简单的应用作为本节课的教学重点,而点到直线的距离公式的推导思路我认为同时也是本节课的教学难点。

根据教学内容和学生的学习状况及其认知特点,本节课我准备采用类比探究式教学模式。即:从学生熟知的实际生活背景出发,通过由特殊到一般、从具体到抽象的课堂教学方式,引导学生探索点到直线的距离的求法。让学生在合作交流、共同探讨的氛围中,认识公式的推导过程及知识的运用,进一步提高学生几何问题代数化的数学思维能力。

下面我想说一说我的教学过程设计。本节课我准备通过以下四个环节进行。分别是问题情境——合作探究——应用举例——归纳总结。

也就是首先从一个具体的实际问题入手,引导学生将其转化为解析几何问题,建立坐标系,由此引出本节课题,同时激发学生学习兴趣,培养学生简单的数学建模能力。

接下来进入到第二个环节,即点到直线的距离公式的推导过程。这个环节我主要是通过三个具体的问题实现的。而这三个问题是由特殊到一般、从具体到抽象的过程,符合学生的认知规律。

第一个问题虽然简单,但是是后面两个问题的基础,因此我准备平均3到4位同学一组放手让学生讨论解决这个问题的方法,在学生讨论的过程中,适时的引导学生从不同的角度分析问题,进而寻求到不同的方法。那么结合学生现有的知识水平,我认为学生可能会想到的方法不外乎会有以下几种:(1)两点间的距离公式;(2)面积法;(3)向量法。

也可能会有同学采用以下这两种方法。由于这个问题比较简单,因此我准备让学生结合找到的方法解决这个问题并相互验证方法的正确性,体验成功的喜悦。

在问题一的基础上,引导学生寻找问题二的解决办法,这一过程,最重要的是将其化归为第一个问题的解决办法。即过点P向X轴和Y轴作垂线构造直角三角形,进而引导学生发现第一个问题的解决方法依然适用于问题二。

这样有了以上两个问题的解决作为铺垫,第三个问题的解决就是顺理成章的了。虽然在前面两个问题的解决中并没有要求学生说出详细的思路,但是经过两次针对性的训练,学生心里应该有一个大概的思路,因此我准备分成以下三个层次进行:

第一个层次是让学生说一说面积法推导点到直线的距离公式的思路;第二个层次则是师生共同用算法框图的形式把思路写出来;第三个层次则是在以上两个层次的基础上,师生合作推导点到直线的距离公式的详细过程。

最终推导得出点到直线的距离公式。

为了能够让学生迅速的掌握点到直线的距离公式,我准备通过以下三个具体的例子及相关练习进行针对性的训练。

第一个例子是公式的简单应用问题,学生应该能够很轻松的解决,同时在学生完成第一个例子的基础上给出一个思考题,学生通过画图也应该能够解决。

而第二个例子则是公式的逆向运用问题,需要提醒学生注意多解的情况。那么第三个例子有以下几个目的:第一个目的是公式的简单应用,第二个目的则是让学生发现选择不同的点平行四边形的高不变,第三个目的则是为平行直线间的距离作铺垫。

接下来是进行归纳小结,此时应该重点强调数形结合思想在本节课的充分体现。

最后是布置作业。

以上就是我的说课内容,谢谢大家!

《点到直线距离》说课稿2

一、关于教材分析

1、教材的地位和作用

“点到直线的距离”是在学生学习直线方程的基础上,进一步研究两直线位置关系的一节内容,我们知道两条直线相交后,进一步的量化关系是角度,而两条直线平行后,进一步的量化关系是距离,而平行线间的距离是通过点到直线距离来解决的.此外在研究直线与圆的位置关系、曲线上的点到直线的距离以及解析几何中有关三角形面积的计算等问题时,都要涉及点到直线的距离.所以 “点到直线的距离公式”是平面解析几何的一个重要知识点.由于这一节是直线内容的结尾部分,学生已经具备直线的有关知识(如交点、垂直、向量、三角形等),因此,一方面公式的推导成为可能,另一方面公式的推导也是检验学生是否真正掌握所学知识点的一个很好的课题.通过公式推导的获得,可以培养学生分析问题、解决问题的能力,以及自主探究和合作学习的能力.

2、教学目标分析

我确定教学目标的依据有以下三条:

(1)教学大纲、考试大纲的要求

(2)新教材的特点

(3)所教学生的实际情况

教学目标包括:知识、能力、德育等方面的内容.

“点到直线的距离公式”是平面解析几何重要的基础知识,也是教学大纲和考试大纲要求掌握的一个知识点.按照大纲 “在传授知识的同时,渗透数学思想方法,培养学生数学能力”的教学要求,结合新教材向量的引入,又根据所带班级学生基础和素质教好的情况,我把本节课的教 ……此处隐藏21664个字……/p>

2、具体教学安排:

多媒体显示实例,电信局线路问题,实际怎样解决?能否转化为解析几何问题?学生很快想到建立坐标系。如何建立坐标系?建系不同,点和直线方程不同,用点的坐标和直线方程如何解决距离问题,由此引出本课课题“点到直线的距离”。

[自主探索推导公式]

1、这一环节要解决的主要问题是:

充分发挥学生的主体作用,引导学生发现点到直线距离公式的推导方法,并推导出公式。在公式的推导过程中,围绕两条线索:明线为知识的学习,暗线为特殊与一般的逻辑方法以及转化、数形结合等数学思想的渗透。

2、具体教学安排:

2.1学生初探解决特例

首先提出问题:怎样用解析几何方法求解点到直线距离?由于字母的运算有难度,引导学生从直线的特殊情况入手,这样问题比较容易解决。学生应该能想到,如果直线是坐标轴或平行坐标轴的时候问题比较容易解决,给予学生肯定的评价。学生自己完成推导过程,选两名学生进行板演。

2.2师生互动获取思路

特殊情况已经解决,引导学生考虑一般直线的情况。通过学生思考,教师收集得到思路一:过作于点,根据点斜式写出直线方程,由与联立方程组解得点坐标,然后利用两点距离公式求得。

我及时评价这种方法思路自然,是一种解决办法。为了拓展学生思维,我们根据已有的知识和经验,还有什么办法能解决?

为此我启发学生,提出问题:

(1)求线段长度可以构造图形吗?

(2)什么图形?如何构造?(学生经过讨论,得到构造三角形,把线段放在直角三角形中。)但是如何构造又是一个难点。

(3)第三个顶点在什么位置?

(4)特殊情况与一般情况有联系吗?

学生通过观察、讨论会提出第三个顶点的不同位置:可能在直线与x轴的交点M或与y轴交点N;或根据特殊情况的证法提示,过P点作x、y轴的平行线与直线的交点R、S。或同时做x、y轴平行线。这样就收集到思路二、三、四。三种思路已经有了,它们的共性是什么?学生能观察出都在三角形中。我继续引导:能不能不构造三角形?而是其它数学相关量?我们刚学习了向量知识,能否用向量知识解决问题呢?(由于在前面学习的向量知识中,向量的模可以表示两点之间的距离,而证明两直线垂直时也已经用到向量知识,法向量又是本节课后阅读材料,本班学生基础和素质较好,在学习直线方向向量时已经布置阅读)。

提出问题:线段的长度就是对应向量的模,那么如何求得向量的模呢?根据实际情况提示一方面的方向完全由直线的方向而定(与法向量共线),另一方面的长度又与点P有关,它的长度又如何控制下来?所以有思路五,由师生一起分析,取法向量=,而=,以下只要求得,就可以得到距离。

2.3分工合作自主完成

学生提出了不同的解决方案,究竟哪种好呢?如果让每位学生都去用不同解法探求,在课堂上时间显然是不允许的,但教学中又要培养学生的运算能力,如何解决这种矛盾呢?现代教育要求学生要有自主学习、合作学习能力,因此我叫学生对五种思路进行分组练习。

在学生求解过程中,我巡视,观看学生解题,了解情况,根据课堂时间的实际情况,选取做好的学生的解题过程用实物投影仪显示。这样不仅能让全体学生看到不同思路的具体解法,还能得出最佳解题方案,接着我展示最佳解题方案的规范步骤。目的让学生有良好的规范的书面表达习惯,起到教师典范的作用。

2.4公式小结概括提升

公式推导出,学生有了成功的喜悦。我也给予了肯定。但是由于公式的结果是一般情况得出的,而对于,点在直线上是否成立,它们与,点在直线外有什么关系?这并没有验证。而我们要求学生考虑问题要全面,为此我提出提问:①上式是由条件下得出,对成立吗?②点P在直线上成立吗?③公式结构特点是什么?用公式时直线方程是什么形式?通过学生的讨论,使学生了解公式适用的范围:任意点、任意直线。同时体现整体认识和分类讨论思想。

依据新课程的理念,教师要创造性地使用教材。在公式的推导过程中,我做了和教材不同的处理方法:(1)先特殊后一般的证法,(2)多角度构造三角形,(3)知识联系,向量解决。目的是让学生在考虑问题时有特殊到一般的意识,符合学生认知规律,使问题的解决循序渐进。向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点。而多角度考虑问题,发散学生思维。

[变式训练学会应用]

1、这一环节解决的主要问题是:

通过练习,熟悉公式结构,记忆并简单应用公式。通过例题的不同解法,进一步让学生体会转化(或化归)的数学思想。

2、具体教学安排:

由学生完成下列练习:

(1)解决课堂提出的实际问题。(学生口答)

(2)求点P0(-1,2)到下列直线的距离:

①3x=2②5y=3③2x+y=10④y=-4x+1

设计说明:练习1的设计解决了上课开始提出的实际问题。练习2的设计故意选特殊直线和非直线方程一般式,主要强调在公式应用时,直线方程是一般式,应用公式的准确性。

例题(3)求平行线2x-7y+8=0和2x-7y-6=0的距离。

我选取的是课本例题,课本只有一种具体点的解法。我通过本节课的学习,让学生对知识从深度和广度上进行挖掘。通过几何画板的演示,让学生直观看到思考问题的方法。除了选择直线上的点,还可以选取原点,求它到两条直线的距离,然后作和。或者选取直线外的点P,求它到两条直线的距离,然后作差。由特殊点到任意点,由特殊直线到任意直线,从而延伸出两平行线间的距离。目的是在整个过程中,让学生注意体会解题方法中的灵活性以及转化等数学思想方法。

[学生小结教师点评]

1、这一环节解决的主要问题和达到的目的是:

通过师生共同小结,巩固所学知识,提炼用到的解决问题的方法,其中蕴涵的数学思想方法,培养学生归纳概括能力。

2、具体教学安排:

本节课小结主要由学生完成知识总结,通过学习知识所体验到的数学思想方法,由学生总结和相互补充,教师适当点评,加以经验总结。

[课外练习巩固提高]

①课本习题7.3的第13题—16题;

②总结写出点到直线距离公式的多种方法。

设计说明:作业1是课本习题,检查学生所学知识掌握的程度。作业2是根据课堂分析,让学生总结公式推导的方法。除了课堂上想到的方法还可以继续思考,比如在用两点距离公式整体代换等方法,发挥学生学习的自主性和思维的广阔性。

四、关于教学评价的设计

新课程标准提出要加强过程性评价,因而在具体教学过程中,我对于学生的语言与行为的表现,及时给予肯定性的表扬和鼓励;学生思维暴露出问题时及时评价,矫正思维方向,调整教学思路;为了获得后反馈信息,布置作业,通过观察学生完成作业情况,了解学生在知识技能和数学方法方面的收获和不足,指导我今后教学。整个教学评价是在师生互动中完成的。

《《点到直线距离》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式